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Abstract—This study proposes and evaluates a manual implementation of the Gradient Boosting algorithm for monthly resistor 

demand forecasting to optimize inventory in electronic component stores. Efficient inventory management is critical in a 

competitive market to ensure product availability and minimize costs. While conventional forecasting methods often struggle with 

demand instability in diverse resistor SKUs, Gradient Boosting offers robust capabilities for handling complex, non-linear 

patterns. Our methodology involves training the model on a small, simulated historical dataset (5 unique resistor IDs), using past 

demand data as features. The model's performance is evaluated using Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE), which consistently decreased during 20 training iterations (final MAE 0.2529, RMSE 0.2938). The model 

successfully predicted demand for Month-4 and Month-5 using a sliding window strategy. These predictions have significant 

implications for reducing overstocking costs, preventing understocking, and optimizing purchasing decisions. However, the use of 

a very small simulated dataset is a major limitation, leading to overfitting and limiting the model's generalizability for real-world 

applications. This study primarily serves as a methodological illustration of the core principles of Gradient Boosting. Future work 

should focus on larger, real-world datasets and leveraging optimized libraries for enhanced accuracy and practical reliability. 
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I. INTRODUCTION 

Efficient inventory management forms the operational backbone for electronic component suppliers, particularly in 

the handling of resistors. In a rapidly evolving and competitive component market, the timely availability of resistors 

with precise values and tolerances is paramount for business continuity and meeting diverse customer demands [1]. 

Resistor overstocking can lead to inflated storage costs, risk of component obsolescence, and unproductive tied-up 

capital. Conversely, understocking can result in lost sales opportunities, inability to fulfill direct customer orders, and 

damage to the store's reputation [3]. Therefore, the ability to accurately predict resistor demand is crucial for optimizing 

inventory levels and maintaining operational balance, ensuring efficient capital turnover and minimizing losses [4], [5], 

[6]. 

Resistors, as indispensable fundamental elements in every electronic circuit, serve as a relevant case study for this 

research. As resistor vendors, stores face the challenge of managing thousands of Stock-Keeping Units (SKUs), which 

vary by value, tolerance, power rating, and other characteristics. Their demand patterns can exhibit significant 

instability depending on resistor values, tolerances, pricing, and broader electronics market trends [7], [8]. Precisely 

understanding and predicting this instability is vital to ensuring stable stock and preventing supply chain disruptions, 

thereby fulfilling all customer needs [9].  

Despite the advancements in demand forecasting, a gap often exists in applying advanced machine learning 

techniques to specific electronic component inventory challenges, especially when detailed historical data might be 

limited or exhibit complex non-linear patterns. 

To address the problem of demand instability and inventory management challenges, this research offers a solution in 

the form of integrating machine learning models into the demand forecasting process. Specifically, the Gradient 

Boosting algorithm, as the foundation of Extreme Gradient Boosting (XGBoost), is chosen for its superior ability to 

handle tabular data, model non-linear relationships, and provide built-in regularization features that prevent overfitting 

[10], [11], [12], [13], [14]. 

The main objective of this research is to develop and evaluate a manual implementation of a Gradient Boosting 

model capable of predicting monthly resistor demand. These accurate predictions are expected to serve as a guide for 

component vendors in making more efficient procurement and stock management decisions, reducing operational costs, 

and ultimately increasing customer satisfaction. 
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This research provides several important contributions: (1) Demonstration of Manual Implementation: Presents a 

manual implementation of Gradient Boosting, providing in-depth insights into how this ensemble algorithm works and 

its role in iteratively reducing prediction errors, (2) Application in Resistor Inventory Optimization: Applies the 

predictive model to a resistor inventory optimization scenario, demonstrating how demand predictions can directly 

support operational cost reduction and improved product availability, and (3) Analysis of Small Data Limitations: 

Highlights the challenges of overfitting and generalization limitations when dealing with very small datasets, providing 

important lessons for future research and applications. 

II. LITERATURE REVIEW 

The importance of accurate demand forecasting in inventory management has been widely recognized across various 

industries. Studies highlight that effective demand prediction is a cornerstone for optimizing inventory levels, leading to 

reduced holding costs and improved service levels. It is emphasized that robust forecasting underpins efficient 

inventory operations [2], while the negative repercussions of both overstocking and understocking, linking them 

directly to financial inefficiencies and customer dissatisfaction, are delved into [3]. The economic benefits of precise 

inventory management, ensuring efficient capital turnover and minimizing losses, are further underscored by research 

[4], [5]. Furthermore, the application of advanced forecasting methods in retail contexts, similar to an electronic 

component store, has shown promise in improving sales predictions [6]. 

Specifically concerning components like resistors, their demand can be inherently complex and exhibit significant 

instability due to various factors. The intricacies of time series analysis are essential for understanding such fluctuating 

demand patterns [7], while the role of supply chain reliability and seasonality as key performance indicators for demand 

forecasting in inventory is also emphasized [8]. The criticality of predicting these instabilities to ensure supply chain 

stability and avoid disruptions is also a recurring theme in the literature [9].  

The integration of machine learning technologies, particularly advanced ensemble methods, offers substantial 

potential to overcome the limitations of conventional forecasting methods. Extreme Gradient Boosting (XGBoost), a 

highly optimized implementation of Gradient Boosting, has demonstrated superior performance in various prediction 

tasks involving tabular data [10]. The foundational principles of Gradient Boosting, which sequentially build models to 

correct errors from previous ones, allow it to handle heterogeneous data and identify complex non-linear relationships 

with high accuracy [11], [12], [13]. The selection of Gradient Boosting, and by extension the principles of XGBoost, is 

justified by its proven ability to achieve high accuracy with structured data, its capacity to model non-linear 

relationships between variables, and its built-in regularization features that effectively prevent overfitting [11], [12], 

[14], [10]. These capabilities are highly relevant given the often complex and unstable characteristics of component 

sales data. 

III. MATERIALS AND METHODS 

3.1. Research Design 

This research adopts a quantitative approach with a focus on predictive modeling. This research design follows the 

Input-Process-Output (IPO) flow, where historical resistor demand data serves as input, the development and evaluation 

of the Gradient Boosting model as the process, and resistor demand prediction for inventory optimization as the output. 

For a clearer visualization, Figure 1 presents the block diagram of this research design. 

 

 

Figure 1. Block Diagram of Research Design 

Figure 1 illustrates the Input-Process-Output (IPO) flow of the research methodology, detailing the data input, the 

Gradient Boosting model development and evaluation, and the resulting demand predictions for inventory optimization. 

The objective is to develop and evaluate a machine learning model capable of predicting monthly resistor demand for 

future periods (Month-4 and Month-5). These predictions are expected to serve as a basis for supporting resistor 

inventory optimization. The Gradient Boosting algorithm was chosen for its ability to handle non-linear relationships 

and produce accurate predictions on tabular data [11], [12], [13]. This manual implementation serves as a demonstration 

of the fundamental principles underlying optimized algorithms like XGBoost [10]. 
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2. Data Source 

The dataset used in this study is simulated historical resistor demand data, consisting of 5 unique entries (ID). These 

entries represent common types of resistors, such as E12, E24, E48, E96, and E192 series, each with standard resistance 

values and tolerances [15], [16], [17], [18]. Each entry includes the following attributes: 

 

• ID: A unique identifier for each resistor type (e.g., a specific resistor value within an E series). 

• Value: A numerical attribute representing the resistance value of the resistor (e.g., in Ohms) relevant to the 

specified E series. 

• Tolerance: A numerical attribute representing the tolerance level of the resistor (e.g., 0.10, 0.05) according to 

the E series standard. 

• Month-3: Actual resistor demand three months prior to the target month. 

• Month-2: Actual resistor demand two months prior to the target month. 

• Month-1: Actual resistor demand one month prior to the target month. 

• Demand: Actual resistor demand in the target month (the month after Month-1), which serves as the dependent 

variable or target to be predicted. 

 

To provide a concrete overview of the data structure used, this dataset structure is represented as follows: 

data = { 

    'ID': [1, 2, 3, 4, 5], 

    'Value': [10, 22, 47, 100, 220], 

    'Tolerance': [0.10, 0.05, 0.02, 0.01, 0.10], 

    'Month-3': [10, 11, 12, 14, 7], 

    'Month-2': [9, 10, 11, 13, 8], 

    'Month-1': [8, 9, 13, 12, 6], 

    'Demand': [9, 10, 14, 12, 7] 

} 

Although this dataset is small, it is used specifically for demonstration purposes and for an in-depth understanding of 

how the Gradient Boosting algorithm works iteratively. In real-world applications, datasets would include a wider 

variety of E12, E24, E48, E96, and E192 series resistors, as well as longer historical periods. Larger and more 

representative datasets are highly necessary to achieve reliable and generalizable prediction accuracy. 

 

3. Data Preprocessing 

The data preprocessing stage involves identifying features and targets, as well as preparing data for model training: 

 

• Feature Identification (Independent Variables): The features used to train the model are historical resistor 

demand data: Month-1, Month-2, and Month-3. Although Value and Tolerance are available in the dataset 

and are relevant to resistor characteristics (including E series), they are not directly used as input for the 

decision trees in this Gradient Boosting implementation, but they remain part of the context for each resistor ID.  

• Target Identification (Dependent Variable): The Demand variable is set as the prediction target, representing 

the actual resistor demand in the month after Month-1.  

• Data Splitting: Due to the very small size of the dataset, the entire dataset is used for model training to 

maximize the learning of existing patterns. In large-scale research, splitting data into training, validation, and 

test sets is standard practice. 

 

4. Model Development 

The predictive model is built using a manual implementation of the Gradient Boosting Regression algorithm. This 

implementation aims to demonstrate the core principles of Gradient Boosting, which form the basis for more advanced 

and optimized algorithms like Extreme Gradient Boosting (XGBoost). This model development process includes the 

following steps: 

 

• Basic Algorithm: Gradient Boosting is an ensemble technique that builds models sequentially, where each new 

model attempts to correct errors made by the previous models. 

• Weak Learner: Each individual model in this ensemble is a decision tree (DecisionTreeRegressor) from the 

scikit-learn library. 

• Model Parameters: 

1. n_estimators: The number of decision trees built in the ensemble is set to 20. More trees lead to a more 

complex model but also a higher risk of overfitting. 
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2. learning_rate: The learning rate is set at 0.1. This parameter controls how much each new tree 

contributes to the overall prediction. Smaller values require more trees but can result in a more robust model 

[14]. 

3. max_depth: The maximum depth of each decision tree is limited to 3. This depth restriction helps prevent 

each tree from becoming too complex and reduces the risk of overfitting. 

4. random_state: Set to 42 to ensure reproducibility of tree training results. 

• Iterative Training Process: 

1. Initial Prediction Initialization: The initial prediction (F_train) is initialized as the average of all target 

values (Demand) in the training dataset. The average formula is calculated as: 

                                                                                       
=

=
n

i

iy
n

y
1

1
                                                                      (1) 

where: 

y : average target value. 

n : number of training data samples. 

iy : individual target value 

 

2. Boosting Iterations: For each of the n_estimators iterations: 

o Residual Calculation: Residual (error) is calculated as the difference between the actual Demand value 

and the current F_train prediction. This residual serves as the negative gradient of the loss function. 

o Tree Training on Residuals: A new decision tree is trained to predict these residuals, not the original 

target. This tree learns from the remaining errors. 

o Prediction Update: The prediction from the newly trained tree is multiplied by the learning_rate 

and added to F_train. This process gradually "pushes" the model's prediction closer to the actual 

value. 

 

5. Model Evaluation 

Model evaluation is performed to measure the model's performance and accuracy on the training data. The evaluation 

metrics used are: 

 

• Mean Absolute Error (MAE): Measures the average absolute difference between predicted and actual values. 

MAE provides a direct indication of the average prediction error in the same units as the target variable [19], 

[20].  

                                                                             −= ii yy
n

MAE
1

                                                                      (2) 

where: 

n : number of data samples 

iy : i-th actual value (observation) 

iy


: i-th predicted value 

 

• Root Mean Squared Error (RMSE): Measures the square root of the average of the squared differences between 

predicted and actual values. RMSE is more sensitive to large errors (outliers) than MAE [19], [20].  

                                                                      ( )
=

−=
n

i

ii yy
n

RMSE
1

21 
                                                                 (3) 

where: 

n : number of data samples 

iy : i-th actual value (observation) 
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iy


: i-th predicted value 

• Iterative Evaluation Visualization: Line graphs are used to visualize changes in MAE and RMSE values at each 

training iteration. These graphs help monitor model convergence and identify potential overfitting (if validation 

error starts to increase). 

• Decision Tree Structure: The structure of each trained decision tree is displayed to provide insights into how the 

model makes decisions and which features are most influential in predicting residuals. 

 

6. Prediction Strategy (Forecasting) 

The trained model is used to predict demand for future months (Month-4 and Month-5) using a "sliding window" 

strategy. Accurate demand predictions are crucial for informed decision-making in resistor inventory optimization. 

 

• Month-4 Demand Prediction: To predict Demand for Month-4, input features are prepared by shifting historical 

data: 

 

o Month-3 (for Month-4) is taken from the original Month-2. 

o Month-2 (for Month-4) is taken from the original Month-1. 

o Month-1 (for Month-4) is taken from the original Demand (which was the training target). 

 

The model then runs this input data through all trained trees to generate Predicted_Demand_Month_4. 

 

• Month-5 Demand Prediction: There are two scenarios for predicting Demand for Month-5: 

There are two scenarios for predicting Demand for Month-5: 

 

1. Using Month-4 Prediction: If actual Month-4 data is not yet available, the Predicted_Demand_Month_4 

generated by the model will be used as the latest historical input (new Month-1) to predict Month-5. This 

approach is susceptible to error propagation, where errors from Predicted_Demand_Month_4 can affect 

the accuracy of Predicted_Demand_Month_5 [21], [22].  

 

2. Using Actual Month-4 Data (If Available): If actual Demand data for Month-4 is available, that actual data 

will be used as the latest historical input (new Month-1) for Month-5 prediction. This is the more 

recommended method as it reduces the risk of error accumulation and yields more accurate predictions. 

 

7. Development Environment 

This research was implemented using the Python programming language. Key libraries used include: 

 

• NumPy: For numerical operations and arrays. 

• Pandas: For data manipulation and analysis (DataFrames). 

• Scikit-learn: Provides DecisionTreeRegressor implementation and export_text function. 

• Matplotlib: For visualizing model evaluation graphs. 

 

IV. RESULTS AND DISCUSSION 

1. Model Training Results 

The Gradient Boosting model training was conducted over 20 iterations, with each iteration adding a new decision 

tree that attempts to reduce the residuals from previous predictions. Table 1 shows the final prediction results of the 

model on the resistor demand training data. 

 
Table 1. Prediction Results on Training Data 

ID Demand Predicted_Training Residual_Training 

1 9 9.170207 -0.170207 

2 10 10.048631 -0.048631 

3 14 13.562324 0.437676 

4 12 11.805477 0.194523 

5 7 7.413361 -0.413361 

 

Predicted_Training represents the resistor demand values predicted by the model after 20 iterations on the same 

data used for training. Residual_Training shows the difference between the actual resistor demand values and the 



International Journal of Research in Engineering and Modern Technology (IJREMTE) 

Volume 2, No 1, April 2025, pages 8-15 

ISSN 3089-4077 

 

12 

model's predictions. Residual values close to zero indicate that the model has learned well to adapt to the patterns in the 

available training data. 

The model's performance progression during the training process can be observed through MAE and RMSE values 

per iteration. In Iteration 1, the model started with an MAE of 1.8720 and an RMSE of 2.1749. Over the iterations, both 

error metrics showed a consistent decrease, reaching an MAE of 0.2529 and an RMSE of 0.2938 at Iteration 20. This 

decrease indicates that each added decision tree successfully reduced the overall prediction error of the model.  

The visual progression of model performance is also shown in Fig. 2. 

 

 
Figure 2. MAE and RMSE Graph per Training Iteration 

 

Figure 2 shows that the MAE (blue line) and RMSE (red line) values consistently decrease as the number of 

iterations increases. RMSE is consistently higher than MAE, which is expected as RMSE gives more weight to larger 

errors (due to squaring). This stable downward trend indicates that the Gradient Boosting algorithm successfully 

converged and improved the model's accuracy on the training data. 

To understand how the model makes decisions and identifies patterns in the data, it is important to review the 

structure of the decision tree formed in each iteration. As an illustration, here is the textual representation of the 

decision tree structure formed in Iteration 1: 

 
|--- Bulan-2 <= 10.50 

|   |--- Bulan-3 <= 8.50 

|   |   |--- value: [-3.40] 

|   |--- Bulan-3 >  8.50 

|   |   |--- Bulan-2 <= 9.50 

|   |   |   |--- value: [-1.40] 

|   |   |--- Bulan-2 >  9.50 

|   |   |   |--- value: [-0.40] 

|--- Bulan-2 >  10.50 

|   |--- Bulan-3 <= 13.00 

|   |   |--- value: [3.60] 

|   |--- Bulan-3 >  13.00 

|   |   |--- value: [1.60] 

 

This tree structure shows how the model makes decisions based on Month-2 and Month-3 values to predict 

residuals. The value at each leaf of the tree represents the predicted residual contribution by that tree. Over iterations, 

the value at the tree leaves will change (decrease) as subsequent trees focus on progressively smaller residuals. 

 

2. Month-4 Demand Prediction Results 

After the model was trained, it was used to predict resistor demand for Month-4. The input for this prediction was 

prepared by shifting historical data, where the actual Demand values from the training dataset served as the new 

Month-1 for Month-4 prediction. Table 2 presents the resistor demand prediction results for Month-4. 
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Table 2. Month-4 Demand Prediction Results 

ID Value Tolerance 
Month-3 

for_Month_4 

Month-2 

for_Month_4 

Month-1 

for_Month_4 
Predicted_Demand_Month_4 

1 10 0.10 9 8 9 9.170207 

2 22 0.05 10 9 10 10.048631 

3 47 0.02 11 13 14 13.562324 

4 100 0.01 13 12 12 11.805477 

5 220 0.10 8 6 7 7.413361 

 

Predicted_Demand_Month_4 shows the estimated resistor demand for each ID based on patterns learned from 

historical data. For example, for ID=1, the model predicts a resistor demand of 9.170207 for Month-4. It should be 

noted that, due to the very limited size of the training dataset, these predicted values tend to be very similar to the 

predictions on the training data, indicating the model's tendency to memorize existing patterns. 

3. Month-5 Demand Prediction Results 

Resistor demand prediction for Month-5 is explored in two scenarios: 

 

3.1. Scenario 1: Using Month-4 Prediction 

In this scenario, Predicted_Demand_Month_4 is used as the latest historical input (the new Month-1) to predict 

Month-5. Table 3 shows the prediction results under this scenario. 

 
Table 3. Month-5 Demand Prediction Results (Using Month-4 Prediction) 

ID Value Tolerance 
Month-3 

for_Month_5 

Month-2 

for_Month_5 

Month-1 

for_Month_5 
Predicted_Demand_Month_5 

1 10 0.10 8 9 9.170207 9.170207 

2 22 0.05 9 10 10.048631 10.048631 

3 47 0.02 13 14 13.562324 13.562324 

4 100 0.01 12 12 11.805477 11.805477 

5 220 0.10 6 7 7.413361 7.413361 

 

These prediction results show how the model continues to estimate resistor demand for further periods. However, 

this approach is susceptible to error propagation, where errors from Predicted_Demand_Month_4 can affect the 

accuracy of Predicted_Demand_Month_5 [21], [22]. 

 

3.2. Scenario 2: Using Actual Month-4 Data (Simulated) 

To demonstrate the impact of using actual data, a simulation of actual Month-4 data is used as input to predict 

Month-5. Table 4 presents the prediction results under this scenario. 

 
Table 4. Month-5 Demand Prediction Results (Using Actual Month-4 Simulated Data) 

ID Value Tolerance 
Month-3 

for_Month_5 

Month-2 

for_Month_5 

Month-1 

for_Month_5 
Predicted_Demand_Month_5 

1 10 0.10 8 9 9.500000 9.170207 

2 22 0.05 9 10 10.200000 10.048631 

3 47 0.02 13 14 13.800000 13.562324 

4 100 0.01 12 12 12.100000 11.805477 

5 220 0.10 6 7 7.300000 7.413361 

 

The comparison between Table 3 and Table 4 illustrates the importance of using actual data if available. Using actual 

Month-4 data (simulated) as the latest historical input for Month-5 prediction is expected to yield more accurate 

predictions compared to using previous Month-4 predictions, as it reduces error propagation. 

 

4. General Discussion and Implications 

This research successfully demonstrates a manual implementation of the Gradient Boosting algorithm for time series 

prediction. The model shows the ability to learn patterns from historical data and iteratively reduce errors on training 

data, as indicated by the consistent decrease in MAE and RMSE. This manual implementation serves as a conceptual 

foundation for understanding how more advanced and optimized Extreme Gradient Boosting (XGBoost) algorithms 

work [10], [11], [12], [13]. 

The resistor demand predictions generated by this model have significant implications for resistor inventory 

optimization. By knowing the estimated demand for Month-4 and Month-5, companies can: 

 

• Reduce Storage Costs: Minimize overstocking of resistors, which reduces storage costs, risk of damage, or 

obsolescence. 

• Improve Product Availability: Prevent understocking of resistors, ensuring product availability when needed, 

and avoiding lost sales and customer dissatisfaction. 
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• Optimize Purchasing and Production Decisions: Enable inventory managers to plan raw material purchases and 

resistor production schedules more timely and efficiently, thereby reducing operational costs and increasing 

supply chain responsiveness. 

 

However, it is important to acknowledge a significant limitation of this research due to the very small dataset size 

(only 5 rows of data). With limited data, the model tends to overfit, meaning it memorizes specific patterns in the 

training data rather than learning generalizable relationships [11], [14]. This is evident from the similarity between 

predictions on the training data and predictions for Month-4 and Month-5. Therefore, the results obtained in this study 

primarily serve as a methodological illustration and basic concept validation of the Gradient Boosting algorithm rather 

than a reliable prediction for real-world applications. 

 

 

V. CONCLUSION 

This research successfully developed and demonstrated a manual implementation of the Gradient Boosting algorithm 

to predict monthly resistor demand. The model showed the ability to learn patterns from historical data from the 

preceding three months, with consistent evaluation performance showing a decrease in MAE and RMSE values at each 

training iteration. Demand predictions for Month-4 and Month-5 were also successfully generated using a "sliding 

window" strategy. 

These prediction results have significant positive implications for resistor inventory optimization. With more accurate 

demand estimates, electronic component supply stores can: 

 

• Reduce storage costs due to overstocking.  

• Improve product availability and avoid lost sales due to understocking.  

• Optimize purchasing and production planning. 

 

Nevertheless, it must be acknowledged that this research has substantial limitations, namely the use of a very small 

simulated dataset (only 5 rows). This dataset size causes the model to tend to overfit, limiting its generalizability, and 

making the prediction results serve more as a methodological illustration than as a reliable prediction tool for real-world 

applications. 

For future development, it is highly recommended to: 

 

• Use larger and more varied resistor demand datasets to train the model, thereby improving generalization. 

• Implement more robust cross-validation techniques and data splitting (training, validation, test set). 

• Utilize optimized Gradient Boosting libraries (e.g., XGBoost, LightGBM) for better scalability and 

performance. 

• Perform systematic hyperparameter tuning to achieve optimal accuracy. 
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